p-group, non-abelian, nilpotent (class 4), monomial
Aliases: C42⋊4D4, C24.40D4, 2+ 1+4.1C22, C2≀C4⋊2C2, (C2×Q8)⋊3D4, C2≀C22.C2, C22⋊C4⋊2D4, (C22×C4)⋊2D4, C42⋊3C4⋊5C2, C2.21C2≀C22, D4.9D4⋊1C2, (C2×D4).2C23, C23.14(C2×D4), C23.7D4⋊1C2, C23.D4⋊1C2, C23⋊C4.1C22, C22≀C2.4C22, C22.45C22≀C2, C4.D4.1C22, C22.45C24⋊1C2, C4.4D4.18C22, C22.D4.3C22, (C2×C4).14(C2×D4), SmallGroup(128,929)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42⋊4D4
G = < a,b,c,d | a4=b4=c4=d2=1, ab=ba, cac-1=dad=a-1b-1, cbc-1=a2b-1, bd=db, dcd=c-1 >
Subgroups: 368 in 129 conjugacy classes, 28 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C23⋊C4, C23⋊C4, C4.D4, C4≀C2, C2×C22⋊C4, C42⋊C2, C4×D4, C22≀C2, C22≀C2, C22⋊Q8, C22.D4, C22.D4, C4.4D4, C42⋊2C2, C8.C22, 2+ 1+4, C2≀C4, C23.D4, C42⋊3C4, D4.9D4, C2≀C22, C23.7D4, C22.45C24, C42⋊4D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C2≀C22, C42⋊4D4
Character table of C42⋊4D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8 | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ16 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ17 | 4 | -4 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | 0 | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ18 | 4 | -4 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 0 | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ19 | 4 | -4 | 0 | -2 | 2 | 0 | 0 | 0 | 2i | 0 | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ20 | 4 | -4 | 0 | -2 | 2 | 0 | 0 | 0 | -2i | 0 | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 3 7 6)(2 4 8 5)(9 16 11 14)(10 13 12 15)
(1 10 6 13)(2 16 4 9)(3 15 7 12)(5 11 8 14)
(1 15)(2 11)(3 10)(4 14)(5 16)(6 12)(7 13)(8 9)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,3,7,6)(2,4,8,5)(9,16,11,14)(10,13,12,15), (1,10,6,13)(2,16,4,9)(3,15,7,12)(5,11,8,14), (1,15)(2,11)(3,10)(4,14)(5,16)(6,12)(7,13)(8,9)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,3,7,6)(2,4,8,5)(9,16,11,14)(10,13,12,15), (1,10,6,13)(2,16,4,9)(3,15,7,12)(5,11,8,14), (1,15)(2,11)(3,10)(4,14)(5,16)(6,12)(7,13)(8,9) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,3,7,6),(2,4,8,5),(9,16,11,14),(10,13,12,15)], [(1,10,6,13),(2,16,4,9),(3,15,7,12),(5,11,8,14)], [(1,15),(2,11),(3,10),(4,14),(5,16),(6,12),(7,13),(8,9)]])
G:=TransitiveGroup(16,345);
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 7 15 12)(2 8 16 9)(3 5 13 10)(4 6 14 11)
(2 9 14 11)(3 13)(4 6 16 8)(5 12 10 7)
(2 11)(3 13)(4 8)(5 10)(6 16)(9 14)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,7,15,12)(2,8,16,9)(3,5,13,10)(4,6,14,11), (2,9,14,11)(3,13)(4,6,16,8)(5,12,10,7), (2,11)(3,13)(4,8)(5,10)(6,16)(9,14)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,7,15,12)(2,8,16,9)(3,5,13,10)(4,6,14,11), (2,9,14,11)(3,13)(4,6,16,8)(5,12,10,7), (2,11)(3,13)(4,8)(5,10)(6,16)(9,14) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,7,15,12),(2,8,16,9),(3,5,13,10),(4,6,14,11)], [(2,9,14,11),(3,13),(4,6,16,8),(5,12,10,7)], [(2,11),(3,13),(4,8),(5,10),(6,16),(9,14)]])
G:=TransitiveGroup(16,399);
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 8 3 5)(2 7 4 6)(9 15 11 13)(10 16 12 14)
(1 15 3 13)(2 10)(4 12)(5 11)(6 16 7 14)(8 9)
(1 13)(2 10)(3 15)(4 12)(5 11)(6 14)(7 16)(8 9)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,8,3,5)(2,7,4,6)(9,15,11,13)(10,16,12,14), (1,15,3,13)(2,10)(4,12)(5,11)(6,16,7,14)(8,9), (1,13)(2,10)(3,15)(4,12)(5,11)(6,14)(7,16)(8,9)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,8,3,5)(2,7,4,6)(9,15,11,13)(10,16,12,14), (1,15,3,13)(2,10)(4,12)(5,11)(6,16,7,14)(8,9), (1,13)(2,10)(3,15)(4,12)(5,11)(6,14)(7,16)(8,9) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,8,3,5),(2,7,4,6),(9,15,11,13),(10,16,12,14)], [(1,15,3,13),(2,10),(4,12),(5,11),(6,16,7,14),(8,9)], [(1,13),(2,10),(3,15),(4,12),(5,11),(6,14),(7,16),(8,9)]])
G:=TransitiveGroup(16,400);
(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 3 4 2)(5 7 6 8)(9 10 11 12)(13 16 15 14)
(1 9 8 15)(2 10 5 16)(3 12 6 14)(4 11 7 13)
(1 13)(2 14)(3 16)(4 15)(5 12)(6 10)(7 9)(8 11)
G:=sub<Sym(16)| (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,3,4,2)(5,7,6,8)(9,10,11,12)(13,16,15,14), (1,9,8,15)(2,10,5,16)(3,12,6,14)(4,11,7,13), (1,13)(2,14)(3,16)(4,15)(5,12)(6,10)(7,9)(8,11)>;
G:=Group( (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,3,4,2)(5,7,6,8)(9,10,11,12)(13,16,15,14), (1,9,8,15)(2,10,5,16)(3,12,6,14)(4,11,7,13), (1,13)(2,14)(3,16)(4,15)(5,12)(6,10)(7,9)(8,11) );
G=PermutationGroup([[(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,3,4,2),(5,7,6,8),(9,10,11,12),(13,16,15,14)], [(1,9,8,15),(2,10,5,16),(3,12,6,14),(4,11,7,13)], [(1,13),(2,14),(3,16),(4,15),(5,12),(6,10),(7,9),(8,11)]])
G:=TransitiveGroup(16,410);
Matrix representation of C42⋊4D4 ►in GL4(𝔽5) generated by
2 | 0 | 0 | 4 |
0 | 2 | 0 | 0 |
1 | 2 | 0 | 0 |
4 | 3 | 2 | 0 |
0 | 0 | 3 | 0 |
3 | 0 | 1 | 1 |
3 | 0 | 0 | 0 |
2 | 4 | 1 | 0 |
2 | 4 | 0 | 4 |
4 | 3 | 2 | 0 |
4 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 2 |
4 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
G:=sub<GL(4,GF(5))| [2,0,1,4,0,2,2,3,0,0,0,2,4,0,0,0],[0,3,3,2,0,0,0,4,3,1,0,1,0,1,0,0],[2,4,4,0,4,3,0,3,0,2,0,0,4,0,0,0],[0,0,4,0,0,0,0,3,4,0,0,0,0,2,0,0] >;
C42⋊4D4 in GAP, Magma, Sage, TeX
C_4^2\rtimes_4D_4
% in TeX
G:=Group("C4^2:4D4");
// GroupNames label
G:=SmallGroup(128,929);
// by ID
G=gap.SmallGroup(128,929);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,456,422,297,1971,375,4037]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^4=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^-1,c*b*c^-1=a^2*b^-1,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export